EGSnrc C++ class library  Report PIRS-898 (2021)
Iwan Kawrakow, Ernesto Mainegra-Hing, Frederic Tessier, Reid Townson and Blake Walters
Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
EGS_NDGeometry Class Reference

A class modeling a N-dimensional geometry. More...

#include <egs_nd_geometry.h>

Inheritance diagram for EGS_NDGeometry:
EGS_BaseGeometry EGS_RZGeometry

Public Member Functions

 EGS_NDGeometry (int ng, EGS_BaseGeometry **G, const string &Name="", bool O=true)
 
 EGS_NDGeometry (vector< EGS_BaseGeometry * > &G, const string &Name="", bool O=true)
 
bool isInside (const EGS_Vector &x)
 
int isWhere (const EGS_Vector &x)
 
int inside (const EGS_Vector &x)
 
EGS_Float howfarToOutside (int ireg, const EGS_Vector &x, const EGS_Vector &u)
 
int howfar (int ireg, const EGS_Vector &x, const EGS_Vector &u, EGS_Float &t, int *newmed=0, EGS_Vector *normal=0)
 
EGS_Float hownear (int ireg, const EGS_Vector &x)
 
int getMaxStep () const
 
const string & getType () const
 
void printInfo () const
 
virtual void getLabelRegions (const string &str, vector< int > &regs)
 
void ndRegions (int r, int dim, int dimk, int k, vector< int > &regs)
 
- Public Member Functions inherited from EGS_BaseGeometry
 EGS_BaseGeometry (const string &Name)
 Construct a geometry named Name. More...
 
virtual ~EGS_BaseGeometry ()
 Destructor. More...
 
bool isConvex () const
 Is the geometry convex? More...
 
virtual EGS_Float getVolume (int ireg)
 Calculates the volume of region ireg. More...
 
virtual EGS_Float getBound (int idir, int ind)
 Returns region boundaries in direction determined by idir. More...
 
virtual int getNRegDir (int idir)
 
int regions () const
 Returns the number of local regions in this geometry. More...
 
virtual bool isRealRegion (int ireg) const
 Returnes true if ireg is a real region, false otherwise. More...
 
virtual int medium (int ireg) const
 Returns the medium index in region ireg. More...
 
virtual int computeIntersections (int ireg, int n, const EGS_Vector &x, const EGS_Vector &u, EGS_GeometryIntersections *isections)
 Calculates intersection distances to region boundaries. More...
 
void setMedium (const string &Name)
 Set all regions to a medium with name Name. More...
 
void setMedium (int start, int end, const string &Name, int delta=1)
 Set every delta'th region between start and end to the medium named Name. More...
 
void setMedium (int imed)
 Set all regions to a medium with index imed. More...
 
void setMedium (int istart, int iend, int imed, int delta=1)
 Set every delta'th region between start and end (inclusive) to imed. More...
 
void setMedia (EGS_Input *inp)
 Set the media in the geometry from the input pointed to by inp. More...
 
bool hasRhoScaling () const
 Does this geometry object have a mass density scaling feature? More...
 
virtual EGS_Float getRelativeRho (int ireg) const
 Get the relative mass density in region ireg. More...
 
virtual void setRelativeRho (int start, int end, EGS_Float rho)
 Set the relative mass density in regions. More...
 
virtual void setRelativeRho (EGS_Input *)
 Set the relative mass density from an user input. More...
 
EGS_Float getMediumRho (int ind) const
 
virtual void setApplication (EGS_Application *app)
 
bool hasBScaling () const
 Does this geometry object have a B field scaling feature?
 
virtual EGS_Float getBScaling (int ireg) const
 Get the B field scaling factor in region ireg.
 
virtual void setBScaling (int start, int end, EGS_Float bf)
 Set the B field scaling factor in regions. More...
 
virtual void setBScaling (EGS_Input *)
 Set the B field scaling factor from an user input. More...
 
const string & getName () const
 Get the name of this geometry. More...
 
void setDebug (bool deb)
 Turn debugging on. More...
 
void setName (EGS_Input *inp)
 Set the name of the geometry from the input inp. More...
 
void setBoundaryTolerance (EGS_Input *inp)
 Set the value of the boundary tolerance from the input inp. More...
 
void setBoundaryTolerance (EGS_Float tol)
 Set the value of the boundary tolerance from argument.
 
virtual bool hasBooleanProperty (int ireg, EGS_BPType prop) const
 Is the boolean property prop set for region ireg ?
 
virtual void setBooleanProperty (EGS_BPType prop)
 Set the boolean properties of the entire geometry to prop. More...
 
virtual void addBooleanProperty (int bit)
 Add a boolean property for the entire geometry by setting the bit'th bit. More...
 
virtual void setBooleanProperty (EGS_BPType prop, int start, int end, int step=1)
 Set the boolean properties of every step'th region between start and end (inclusive) to prop. More...
 
virtual void addBooleanProperty (int bit, int start, int end, int step=1)
 Add a boolean property to every step'th region between start and end (inclusive) by setting the bit'th bit. More...
 
int ref ()
 Increase the reference count to this geometry. More...
 
int deref ()
 Decrease the reference count to this geometry. More...
 
EGS_Float getBoundaryTolerance ()
 Get the value of the boundary tolerance.
 
virtual void getNumberRegions (const string &str, vector< int > &regs)
 Get a list of all the regions labeled with a number.
 
virtual const string & getLabelName (const int i)
 Get the name of the i-th explicit label in the geometry.
 
virtual int getLabelCount ()
 Get the number of explicit labels in the geometry.
 
int setLabels (EGS_Input *input)
 Set the labels from an input block.
 
int setLabels (const string &inp)
 Set the labels from an input string.
 

Protected Member Functions

void setup ()
 
void setMedia (EGS_Input *inp, int nmed, const int *med_ind)
 Define media. More...
 

Protected Attributes

int N
 Number of dimensions.
 
EGS_BaseGeometry ** g
 The dimensions.
 
int * n
 Used for calculating region indeces.
 
bool ortho
 Is the geometry orthogonal ?
 
- Protected Attributes inherited from EGS_BaseGeometry
int nreg
 Number of local regions in this geometry. More...
 
string name
 Name of this geometry. More...
 
short * region_media
 Array of media indeces. More...
 
int med
 Medium index. More...
 
bool has_rho_scaling
 Does this geometry have relative mass density scvaling? More...
 
EGS_Float * rhor
 Array with relative mass densities. More...
 
bool has_B_scaling
 Does this geometry has B field scaling factor? More...
 
bool has_Ref_rho
 
EGS_Float * bfactor
 Array with B field scaling factors. More...
 
EGS_Float rhoRef
 Reference density for B field scaling. More...
 
int nref
 Number of references to this geometry. More...
 
bool debug
 Debugging flag. More...
 
bool is_convex
 Is this geometry convex? More...
 
EGS_BPType bproperty
 A bit mask of boolean properties for the entire geometry. More...
 
EGS_BPType * bp_array
 An array of boolean properties on a region by region basis. More...
 
EGS_Float boundaryTolerance
 Boundary tolerance for geometries that need it.
 
EGS_Float halfBoundaryTolerance
 
vector< labellabels
 Labels. More...
 
EGS_Applicationapp
 The application this object belongs to.
 

Static Protected Attributes

static string type = "EGS_NDGeometry"
 The geometry type.
 
- Static Protected Attributes inherited from EGS_BaseGeometry
static int error_flag = 0
 Set to non-zero status if a geometry problem is encountered.
 

Additional Inherited Members

- Static Public Member Functions inherited from EGS_BaseGeometry
static int findRegion (EGS_Float xp, int np, const EGS_Float *p)
 Find the bin to which xp belongs, given np bin edges p. More...
 
static int nMedia ()
 Get the number of media registered so far by all geometries. More...
 
static const char * getMediumName (int ind)
 Get the name of medium with index ind. More...
 
static int addMedium (const string &medname)
 Add a medium or get the index of an existing medium. More...
 
static int getMediumIndex (const string &medname)
 Get the index of a medium named medname. More...
 
static EGS_BaseGeometrycreateGeometry (EGS_Input *)
 Create a geometry (or geometries) from a given input. More...
 
static EGS_BaseGeometrycreateSingleGeometry (EGS_Input *inp)
 Create a single geometry from the input inp. More...
 
static void clearGeometries ()
 Clears (deletes) all geometries in the currently active geometry list. More...
 
static EGS_BaseGeometrygetGeometry (const string &Name)
 Get a pointer to the geometry named Name. More...
 
static EGS_BaseGeometry ** getGeometries ()
 
static int getNGeometries ()
 
static string getUniqueName ()
 Get a unique geometry name. More...
 
static void describeGeometries ()
 Describes all existing geometries. More...
 
static void setActiveGeometryList (int list)
 Set the currently active geometry list. More...
 
static int getLastError ()
 
static void resetErrorFlag ()
 

Detailed Description

A class modeling a N-dimensional geometry.

To understand an N-dimensional geometry object, consider an XYZ-geometry made from sets of $n_x+1$ x-planes, $n_y+1$ y-planes and $n_z+1$ z-planes. This type of geometry is implemented in the DOSXYZnrc user code and is useful e.g. for the modeling of a computed tomography image of a patient undergoing radiotherapy. The sets of x-, y- and z-planes define $n_x \cdot n_y \cdot n_z$ parallelepiped regions (a.k.a. voxels) in space. The regions can be numbered in any way but it is customary to use the convention that when a position is in the $i$'th x-planes region (i.e. between the $i$'th and $i+1$'st x-plane), in the $j$'th y-planes region and in the $k$'th z-planes region, it is in region $i + n_x j + n_x \cdot n_y \cdot k$ in the XYZ-geometry. A position is inside an XYZ-geometry if it is inside the x-planes (i.e. it is between the first and last x-plane), inside the y-planes and inside the z-planes. To calculate the distance to any boundary along a given direction (the howfar() method) for a position inside the XYZ-geometry, one calculates the distance $t_x$ to the x-planes, the distance $t_y$ to the y-panes, the distance $t_z$ to the z-planes and then takes the minimum of $t_x, t_y$ and $t_z$. To calculate the minimum distance to a boundary in any direction (the hownear() method) for a position inside the XYZ-geometry, one calculates the minimum distances to a boundary in any direction to the x-planes, y-planes and z-planes and takes the minimum of the three distances. Consider now an RZ-geometry, i.e. a geometry made from $n_z+1$ z-planes intersecting $n_r$ concentric cylinders with their axis along the z-axis to form $n_z \cdot n_r$ regions. As with the XYZ-geometry one can use the convention that when a position is inside the $i$'th z-planes region and the $j$'th cylinder region, it is in the $i + n_z \cdot j$'th region of the RZ-geometry. To calculate the distance along a given direction to the RZ-geometry for an inside position, one calculates the distances $t_z$ to the planes and $t_r$ to the cylinders and takes the minimum of the two. The minimum distance to a boundary in any direction for an inside point is also calculated as the minimum of the corresponding distances to the planes and to the cylinders.

The above discussion should make it clear that, once the howfar(), hownear(), isInside(), etc., methods are available for planes and cylinders, the algorithms for calculating howfar(), hownear()}, isInside(), etc., is essentially the same for XYZ- and RZ-geometries, with the only difference that in the former case one uses 3 geometries to divide the space into regions (i.e one has a 3-dimensional geometry) and in the latter case only 2 geometries (i.e one has a 2-dimensional geometry).

An N-dimensional geometry is a generalization of this concept to an arbitrary number of geometries (dimensions) of arbitrary types (not just planes and/or cylinders): An N-dimensional geometry is a geometry type that is constructed from $N$ other geometries $G_0, G_1, ..., G_{N-1}$ defining $n_0, n_1, ..., n_{N-1}$ regions so that

It should be clear from the above explanation of the implementation of the various geometry methods that an N-dimensional geometry can be constructed from any $N$ geometries provided that the underlying algorithms apply for the geometrical structure being modeled. An N-dimensional geometry is extremely useful and can be employed to model a wide range of geometries:

An N-dimensional geometry is defined using the following keys:

library = egs_ndgeometry
dimensions = list of names of previously defined geometries
hownear method = 0 or 1

All constituent geometries of the N-dimensional geometry must have been defined previously (i.e. their definition must appear before the definition of the N-dimensional geometry in the input file). The hownear() method input determines if the geometry constituents are considered to be orthogonal with 0 corresponding to orthogonal constituent geometries. It is very hard to automatically determine whether the constituents of an N-dimensional geometry are orthogonal and therefore it is the responsibility of the user to provide this input. Note, however, that the non-orthogonal hownear() version can always be used, it will just underestimate $t_\perp$ for orthogonal geometries and make the simulation run somewhat slower.

N-dimensional geometries are used in many of the example geometry files.

A simple example:

:start geometry definition:

    # First dimension
    :start geometry:
        name        = my_nd_iplanes
        library     = egs_iplanes
        axis        = 0 0 0  0 0 1
        angles      = 0 45 90 135
        # No media required
    :stop geometry:

    # Second dimension
    :start geometry:
        name        = my_nd_cylinders
        library     = egs_cylinders
        type        = EGS_ZCylinders
        radii       = 4 5
        # No medium required
    :stop geometry:

    # Third dimension
    :start geometry:
        name        = my_sphere
        library     = egs_spheres
        midpoint    = 0 0 0
        radii       = 10
    :stop geometry:

    # nd geometry
    :start geometry:
        name            = my_nd
        library         = egs_ndgeometry
        dimensions      = my_nd_iplanes my_nd_cylinders  my_sphere
        hownear method  = 1
        :start media input:
            media = water air water
            set medium = 0 0
            set medium = 1 1
            set medium = 2 0
            set medium = 3 1
            set medium = 4 0
            set medium = 5 1
            set medium = 6 0
            set medium = 7 1
        :stop media input:
    :stop geometry:

    simulation geometry = my_nd

:stop geometry definition:
egs_ndgeometry.png
A simple example

Optional Features

In order to use the gzip functionality you must have the egspp-geometry-lib-extras installed. Due to NRC licensing requirements this code is distributed separately and can be obtained from https://github.com/clrp-code/egspp-geometry-lib-extras/ .

Definition at line 312 of file egs_nd_geometry.h.

Constructor & Destructor Documentation

EGS_NDGeometry::EGS_NDGeometry ( int  ng,
EGS_BaseGeometry **  G,
const string &  Name = "",
bool  O = true 
)

Construct a N-dimensional geometry from the ng dimensions G.

Definition at line 55 of file egs_nd_geometry.cpp.

References g, EGS_BaseGeometry::is_convex, EGS_BaseGeometry::isConvex(), N, n, EGS_BaseGeometry::nreg, and EGS_BaseGeometry::regions().

EGS_NDGeometry::EGS_NDGeometry ( vector< EGS_BaseGeometry * > &  G,
const string &  Name = "",
bool  O = true 
)

Construct a N-dimensional the array of dimensions G.

Definition at line 70 of file egs_nd_geometry.cpp.

References g, EGS_BaseGeometry::is_convex, EGS_BaseGeometry::isConvex(), N, n, EGS_BaseGeometry::nreg, and EGS_BaseGeometry::regions().

Member Function Documentation

void EGS_NDGeometry::setMedia ( EGS_Input inp,
int  nmed,
const int *  med_ind 
)
protectedvirtual

Define media.

This function is re-implemented to permit easier media definition in a N-dimensional geometry.

Reimplemented from EGS_BaseGeometry.

Definition at line 111 of file egs_nd_geometry.cpp.

References egsWarning, EGS_Input::getInput(), EGS_BaseGeometry::med, EGS_BaseGeometry::setMedium(), and EGS_Input::takeInputItem().


The documentation for this class was generated from the following files: